Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 14, 2026
-
Free, publicly-accessible full text available February 28, 2026
-
We present a study on asymptotically compatible Galerkin discretizations for a class of parametrized nonlinear variational problems. The abstract analytical framework is based on variational convergence, or Gamma-convergence. We demonstrate the broad applicability of the theoretical framework by developing asymptotically compatible finite element discretizations of some representative nonlinear nonlocal variational problems on a bounded domain. These include nonlocal nonlinear problems with classically-defined, local boundary constraints through heterogeneous localization at the boundary, as well as nonlocal problems posed on parameter-dependent domains.more » « lessFree, publicly-accessible full text available February 14, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 31, 2025
-
Abstract We study the existence and uniqueness of solutions to the vector field Peierls–Nabarro (PN) model for curved dislocations in a transversely isotropic medium. Under suitable assumptions for the misfit potential on the slip plane, we reduce the 3D PN model to a nonlocal scalar Ginzburg–Landau equation. For a particular range of elastic coefficients, the nonlocal scalar equation with explicit nonlocal positive kernel is derived. We prove that any stable steady solution has a one-dimensional profile. As a result, we obtain that solutions to the scalar equation, as well as the original 3D system, are characterized as a one-parameter family of straight dislocations. This paper generalizes results found previously for the full isotropic case to an anisotropic setting.more » « less
An official website of the United States government
